Conversamos esta
semana sobre a ponte Tacoma nos EUA que caiu devido à ressonância entre
a frequência natural dos materiais utilizados na construção desta
ponte e o som produzido pelo vendo nos cabos de aço. Veja esta tragédia por
conta da desatenção com os princípios físicos da
Ondulatória.
Obs.: Que os nossos alunos e futuros engenheiros civil nunca esqueçam
esta aula.
Em 7 de Novembro de 1940, caiu a ponte pênsil de 1600 metros (Tacoma Narrows), apenas poucos meses após a sua inauguração. De madrugada, os ventos atingiram os 70km/h, fazendo a estrutura oscilar. A polícia fechou então a ponte ao tráfego. Às 9h30m a ponte oscila em 8 ou 9 segmentos com amplitude de 0,9m e frequência de 36 ciclos por minuto. Às 10h00m dá-se um afrouxamento da ligação do cabo de suspensão norte ao tabuleiro, o que faz a ponte entrar num modo de vibração torcional a 14 ciclos por minuto. O eixo da via, os dois pilares e o meio da ponte são nodos.[1]. A partir daí a situação não se alterou muito durante cerca de uma hora, até que às 11h00m se desprende um primeiro pedaço de pavimento e às 11h10m a ponte entra em colapso, caindo no rio.
É a partícula que faz com que você não seja um raio de luz. Não entendeu? Vamos voltar no tempo até uma época em que o Universo inteiro era só um emaranhado de partículas subatômicas que vagavam na velocidade da luz. Então. Os bósons de Higgs, que estavam espalhados entre essas partículas, se uniram e formaram um grande oceano invisível. O resto da mágica aconteceu quando as outras partículas subatômicas começaram a interagir com este oceano. Algumas – os fótons, por exemplo – passaram direto. Outras – os quarks e elétrons – foram atraídas por este mar de bósons de Higgs. E à força que os quarks fazem para atravessar esse óleo nós damos o nome de massa. Isso está acontecendo agora mesmo: nós vivemos submersos no oceano de Higgs até hoje.
O que fizeram para encontrar a partícula?
Gastaram US$ 10 bilhões – o preço do maior acelerador de partículas do Universo conhecido, o LHC. Os cientistas literalmente colocam os prótons para correr lá dentro e provocam colisões frontais entre eles. Essas pancadas geram explosões intensas, como se fossem mini-Big Bangs. É aí que está o truque. Se o Big Bang “de verdade” fez com que os bósons de Higgs aparecessem vagando entre as outras partículas subatômicas, uma versão menor (mas quase tão intensa quanto o original) também faria. E fez.
Então, como os cientistas têm certeza de que a partícula que encontraram é mesmo o bóson de Higgs?
Eles não têm certeza. Quer dizer: a certeza não chega a 100%, mas já é maior do que 99,9%. Funciona assim: a física de hoje tem uma espécie de “tabela” que lista todas as partículas elementares, os tijolos fundamentais da matéria. São seis tipos de quark (os tijolos dos prótons e nêutrons, que constituem basicamente tudo o que você enxerga). Tem também seis “léptons” (elétrons, neutrinos e mais quatro primos próximos deles). Para completar, existem 4 partículas “fantasmas”, geralmente sem peso nenhum, feitas de energia pura. Elas são os “bósons” – os tijolos das forças da natureza. A mais notória é o fóton, o tijolo (ou bóson, se você preferir) da força eletromagnética.
Fechando o arcabouço das partículas elementares, vem a mais curiosa delas: justamente o bóson de Higgs. Ele entra como uma ferramenta para explicar porque existem partículas “fantasmas”, sem massa, e “concretas”, com massa. A ideia é que, na verdade, todas as partículas seriam fantasmas. Mas algumas deixariam para trás seu estado fantasmagórico ao interagirem com o oceano de bósons de Higgs que permeia o Universo – a ideia foi do físico Peter Higgs, que acabou batizando a coisa. Pronto. Tudo explicado.
Agora não falta mais (ou, pelo menos, há mais de 99,9% de chance). Ao analisar os estilhaços de uma colisão entre prótons no LHC, apareceu algo de diferente em meio aos glúons e quarks de sempre. Era uma partícula nova, mas com a mesma massa que o físico Peter Higgs havia previsto para o seu bóson. Falta examinar outras características do achado para ter 100% de certeza de que ele é mesmo o Higgs. Mas os físicos estão confiantes.
De qualquer forma, ainda falta muito a descobrir. Tem as partículas responsáveis pela matéria escura, que representa 85% da matéria do Universo e que ninguém faz ideia do que se trata. Tem a energia escura, a força 100% misteriosa responsável pela expansão do Cosmos… E tem a gravidade. Ela é a força mais cotidiana, mais onipresente, mais pedestre. Mas ainda não sabemos do que ela é feita. Ou se é feita de alguma coisa. O Higgs não é nem o começo.